Search results for "Joint observation"

showing 2 items of 2 documents

Advanced Virgo Status

2015

Abstract The detection of a gravitational wave signal in September 2015 by LIGO interferometers, announced jointly by LIGO collaboration and Virgo collaboration in February 2016, opened a new era in Astrophysics and brought to the whole community a new way to look at - or “listen” to - the Universe. In this regard, the next big step was the joint observation with at least three detectors at the same time. This configuration provides a twofold benefit: it increases the signal-to-noise ratio of the events by means of triple coincidence and allows a narrower pinpointing of GW sources, and, in turn, the search for Electromagnetic counterparts to GW signals. Advanced Virgo (AdV) is the second ge…

Triple coincidenceHistoryComputer sciencePhysics::Instrumentation and DetectorsAstronomy01 natural sciencesLIGO010303 astronomy & astrophysicsmedia_commonSettore FIS/01Detector/dk/atira/pure/sustainabledevelopmentgoals/partnershipsAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsdetector: upgradeComputer Science ApplicationsInterferometryUpgrade[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]upgradeDetection rateAdvanced VirgoGWOrders of magnitude (power)Nuclear and High Energy PhysicsnoiseVIRGO: sensitivitydetector: performancemedia_common.quotation_subjectinterferometerJoint observationgravitational radiation: direct detectionAdvanced Virgo; GW; detectorsEducationelectromagnetic field: production[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wavesSDG 17 - Partnerships for the Goals0103 physical sciencesAerospace engineeringdetector: design010308 nuclear & particles physicsGravitational wavebusiness.industrygravitational radiationAstronomy and AstrophysicsLIGOUniversegravitational radiation detector* Automatic Keywords *VIRGODetectors; Gravitational waves; Nuclear and High Energy Physics; Astronomy and Astrophysicsgravitational radiation: emissionHigh Energy Physics::ExperimentTelecommunicationsbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Joint SLR (Optical Range) and Radar-VLBI Satellite Observations using VIRAC Radio Telescope RT32, RT16 and SLR Station Riga

2020

Abstract Joint VLBI and SLR satellite tracking is a novel tracking approach to explore potential applications and to work out common procedures to coordinate observations between astronomical observatories in Latvia. Global Navigation Satellite System (GNSS) satellites equipped with laser retroreflectors have been chosen as test targets because they are accessible by both measuring techniques – satellite laser ranging (SLR) and Very Long Base Interferometry (VLBI). The first Joint SLR and VLBI observations of selected GNSS satellites using three of Latvian large-scale astronomical utilities – VIRAC radio telescopes RT32 and RT16 (Ventspils International Radio Astronomy Centre of Ventspils U…

PhysicsQC1-999General EngineeringGeneral Physics and Astronomylaw.inventionvlbiRadio telescopejoint observationslawgnss satellitesslrVery-long-baseline interferometryRange (statistics)SatelliteRadarJoint (geology)GeologyRemote sensingLatvian Journal of Physics and Technical Sciences
researchProduct